Interactions and chemical transformations of coronene inside and outside carbon nanotubes.

نویسندگان

  • Bea Botka
  • Melinda E Füstös
  • Hajnalka M Tóháti
  • Katalin Németh
  • Gyöngyi Klupp
  • Zsolt Szekrényes
  • Dorina Kocsis
  • Margita Utczás
  • Edit Székely
  • Tamás Váczi
  • György Tarczay
  • Rudi Hackl
  • Thomas W Chamberlain
  • Andrei N Khlobystov
  • Katalin Kamarás
چکیده

By exposing flat and curved carbon surfaces to coronene, a variety of van der Waals hybrid heterostructures are prepared, including coronene encapsulated in carbon nanotubes, and coronene and dicoronylene adsorbed on nanotubes or graphite via π-π interactions. The structure of the final product is determined by the temperature of the experiment and the curvature of the carbon surface. While at temperatures below and close to the sublimation point of coronene, nanotubes with suitable diameters are filled with single coronene molecules, at higher temperatures additional dimerization and oligomerization of coronene occurs on the surface of carbon nanotubes. The fact that dicoronylene and possible higher oligomers are formed at lower temperatures than expected for vapor-phase polymerization indicates the active role of the carbon surface used primarily as template. Removal of adsorbed species from the nanotube surface is of utmost importance for reliable characterization of encapsulated molecules: it is demonstrated that the green fluorescence attributed previously to encapsulated coronene is instead caused by dicoronylene adsorbed on the surface which can be solubilized and removed using surfactants. After removing most of the adsorbed layer, a combination of Raman spectroscopy and transmission electron microscopy was employed to follow the transformation dynamics of coronene molecules inside nanotubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch Synthesis

The effects of electronic properties of inner and outer surfaces of Carbon Nano Tubes (CNTs) on the deactivation of cobalt Fischer-Tropsch (FT) catalysts were studied. The comparative characterization of the fresh and used catalysts by TEM, XRD, TPR, BET and H2 chemisorption showed that cobalt re-oxidation, cobalt-support interactions and sintering are the main sources o...

متن کامل

Effects of Confinement in Carbon Nanotubes on the Performance and Lifetime of Fischer-Tropsch Iron Nano Catalysts

The effects of confinement in carbon nanotubes on Fischer-Tropsch (FT) activity, selectivity and lifetime of Carbon NanoTubes (CNTs) supported iron catalysts are reported. A method was developed to control the position of the catalytic sites on either inner or outer surface of carbon nanotubes. TEM analyses revealed that more than 80% of iron oxide particles can be controlled to be position...

متن کامل

Ordered and disordered packing of coronene molecules in carbon nanotubes.

Monte Carlo simulations of coronene molecules in single-walled carbon nanotubes (SWCNTs) and dicoronylene molecules in SWCNTs are performed. Depending on the diameter D of the encapsulating SWCNT, regimes favoring the formation of ordered, one-dimensional (1D) stacks of tilted molecules (D ≤ 1.7 nm for coronene@SWCNT, 1.5 nm ≤ D ≤ 1.7 nm for dicoronylene@SWCNT) and regimes with disordered molec...

متن کامل

Modeling of Benzene Adsorption in the Gas Phase on Single-Walled Carbon Nanotubes for Reducing Air Pollution

Air Pollution has always been a major problem in metropolises. Volatile organic compounds are one of the major pollutants that are caused by incomplete combustion of fuels in vehicles and gasoline evaporation, especially in fueling stations. Removing these pollutants through traditional methods has always been considered. The paper investigates and studies chemical adsorption behavior of benzen...

متن کامل

Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study

Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 2014